

High level

Overall energy system:

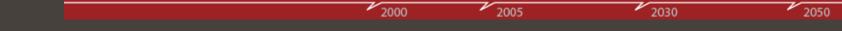
- Period of transition
- Access to relatively cheap fuel dwindling
- Likely diverse energy pathways

Drivers for change:

- GHG and air quality emissions, water, food, quality of life, security, ability to adapt, economic development.
- Uncertainty on future weighting
- Awareness influences scope of solutions

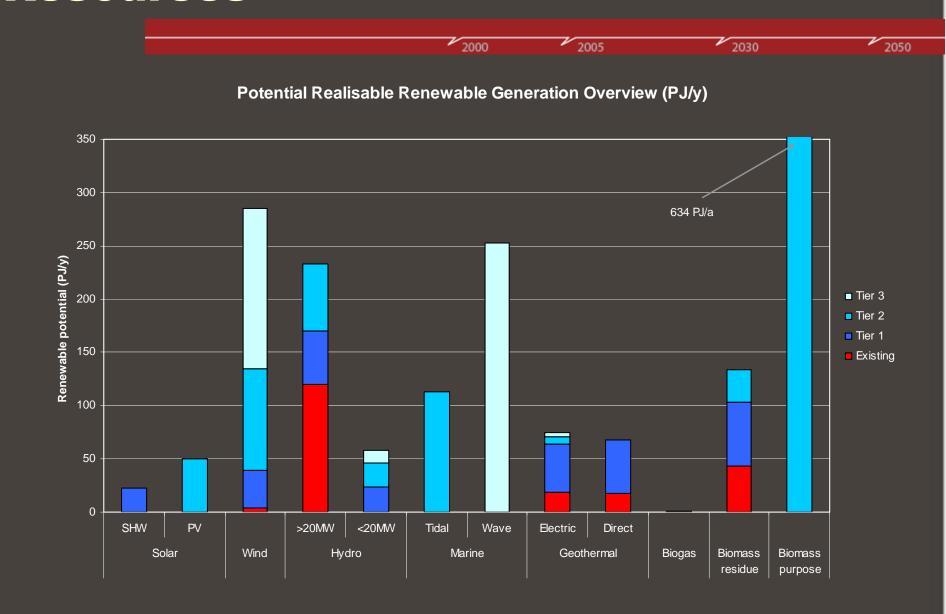
Demand

- Potential for significant change:
 - Technology
 - Behaviour
 - Sources
 - Pathway efficiency
- End-use characterisation:
 - Electricity
 - Heat
 - Transport

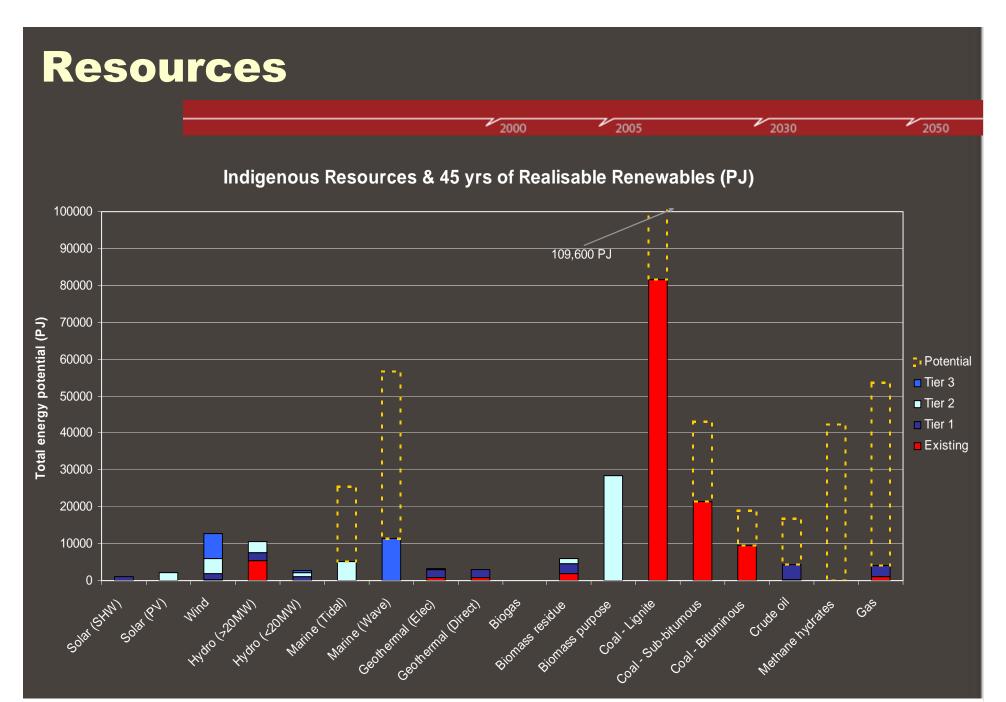


Pathways

- Reasonably good information on aboveground resources
- Difficult to directly compare different energy pathways
 - Different boundaries, assumptions, costs, scales
- Fossil fuel potential
 - Sufficient low grade coal resources
 - Oil and gas: investment and exploration risks.
 - Both require CCS to meet GHG obligations.



Resources





Biomass potential

- Residual potential is limited
- Beyond this <u>purpose grown</u>
 - 1 Mha needed for 30% of current fossil imports
- Multiple benefits
- Emerging biomass-to-liquids pathways:
 - Enzymatic conversion
 - Gasification and Fischer-Tropsch
 - Pyrolysis and refining

Key Points – Resources cont.

Hydrogen:

- Wide range of supply pathways
- Can be a low-carbon option:
 - Biomass
 - Coal with CCS
- Niche stationary applications
- Extension of electric vehicle platform

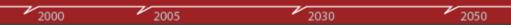
2005

2030

2050

A Future Transport Scenario – An Option from the Science - 2050

Total transport Less Conservation	PJ/y 300 - 80			PJ/y	%
Pathways:		_	Carriers:		
Residuals and wastes	10	5%	Electricity	65	30%
Oil rapeseed	10	5%	HC Liq/gases	105	48%
Algae	5	2%	Hydrogen	50	23%
EV-from grid/DG etc.	65	30%			
PGF-HC	30	14%	Resources:		
PGF-H	10	5%	Wastes/res	15	7%
Lignite-H	10	5%	PGF/PGB	78	35%
Gas-H	15	7%	Non-PGF grid	52	24%
Bio-H	15	7%	Fossil Indig	10	5%
Gas-HC	5	2%	Imports	45	20%
Fossil and bio imports	45	20%	Total	220	100%
Total	220	100%			



Where to from here?

National dialogue critical

Transition management

Integrated policy development

- Science contribution to policy making process
- Develop a plan for energy science R&D

Reporting and information:

- Reports on <u>www.energyscape.co.nz</u>
- LEAP model available to stakeholders

